SISTEMAS CIBER-FÍSICOS EN PROCESOS DE MANUFACTURA Temas Selectos de Robótica I

CICLO	CLAVE DE LA ASIGNATURA
SEMESTRE 3	

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Analizar diversas plataformas para implementar soluciones de inspección y mejora de procesos. Revisar la base de conocimiento de la mejora continua, vista con mayor formalidad desde la aparición de las doctrinas Toyota Production System y Lean Manufacturing.

Aprender el desarrollo de sistemas industriales desde la Programación en lenguaje LabVIEW. Aprender Conectividad a Sensores e instrumentos. Adquisición de datos desde Acelerómetros, termopares, entradas analógicas y digitales. Utilizando equipo del profesor, o que tenemos en el CIMAT. Control de motores, bandas y actuadores lineales.

Desarrollar Sistemas SCADA, para monitoreo de procesos y creación de tablas con registros de sus escenarios en el tiempo. Se presentan ejercicios de Data Science en Manufactura.

Abordar al final tópicos avanzados, se pueden compilar y usar DLLs construidas en Python y C++, por ejemplo para llevar capacidades de OpenCV a LabVIEW y hacia sistemas embebidos.

TEMAS Y SUBTEMAS

- I. Revisión del estado del arte de la mejora continua, para procesos de producción y transformación.
 - a. Introducción a procesos de manufactura y transformación, con implementación de CPS -Cyber-Physical Systems.
 - b. Revisión de papers Review del área de procesos de producción y de Mejora continua.
 - c. Técnicas y aplicaciones.
- II. Revisión de las metodologías de Machine Learning que encuentran aplicación y aceptación en la manufactura.
 - a. Revisión de papers Review del área de Machine Learning relacionados con mecatrónica y CPS -Cyber-Physical Systems.
 - b. Introducción a los métodos de Machine Learning que encuentran aplicación en manufactura.
 - c. Escritura de ensayo: Planteamiento del problema que sea de interés resolver.

III. Aprendizaje del lenguaje de programación LabVIEW, como herramienta de sistemas para automatización en procesos de manufactura.

- a. Aprendizaje del Lenguaje de Programación.
- b. Técnicas avanzadas de programación y arquitecturas de los sistemas industriales.
- c. Integración de LabVIEW con métodos de Machine Learning y CPS -Cyber-Physical Systems.
- d. Desarrollo de la arquitectura de su sistema, haciendo la estructura del problema y preparándolo para su solución.

IV. Revisión de problemas tipo en los procesos productivos y el planteamiento formal de sus soluciones.

- a. Revisión de bibliografía sobre los planteamientos formales de los problemas que se encuentran en Manufactura de procesos y que son susceptibles de ser resueltos con técnicas de Machine Learning y enlaces de CPS -Cyber-Physical Systems.
- b. Desarrollo de planteamiento formal de su problema a resolver, apegándolo a modelos del área que corresponda de cómputo matemático Auto-calibración
- c. Continuación del desarrollo de software (y Hardware si aplica) de su maqueta de problema.

V. Comunicación con sensores y recolección de grandes cantidades de datos. Recabando información a granel. SCADAs.

- a. Creación y manejo de tablas de datos en CPS -Cyber-Physical Systems.
- b. Técnicas de implementación de SCADAS Supervisory Control And Data Acquisition systems.

VI. Diseño de maqueta del problema de cada alumno. Simulación en Software. Posible implementación de algún componente del problema en hardware, utilizando equipo del CIMAT ó del profesor.

- a. Documentación del problema y la estrategia de solución.
- b. Continuación de la Programación de Software de la maqueta del problema, simulado en software o apoyado de hardware.
- c. Preparación y presentación del sistema.

ACTIVIDADES DE APRENDIZAJE

Cursos presenciales

Desarrollo de un proyecto, comenzando con marco o plataforma, añadiendo módulos y funcionalidad.

Lectura de publicaciones especializadas

Preparación de presentación de su sistema. Presentación de avances y exposición final.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Tareas: 30%; Exámen (1): 20%; Presentación Final de su proyecto: 50%

BIBLIOGRAFÍA

Artículos:

A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems

Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics.

A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings

Advances on prognostics for intelligent maintenance systems.

Intelligent prognostics tools and e-maintenance

A Categorical Framework of Manufacturing for Industry 4.0 and Beyond

A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems.

Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review.

Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging

Recent advances and trends in predictive manufacturing systems in big data environment

Libros:

Industry 4.0. Gilchrist, A. (2016)

Applied Cyber-Physical Systems. Editors: Suh, S.C., Tanik, U.J., Carbone, J.N., Eroglu, A. (2014)